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Stripe Glasses: Self-Generated Randomness in a Uniformly Frustrated System
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We show that a system with competing interactions on different length scales, relevant to the formation
of stripes in doped Mott insulators, undergoes a self-generated glass transition which is caused by the
frustrated nature of the interactions and not related to the presence of quenched disorder. An exponen-
tially large number of metastable configurations is found, leading to a slow, landscape dominated long
time relaxation and a breakup of the system into a disordered inhomogeneous state.

PACS numbers: 75.10.Nr, 61.43.Gt, 74.25.–q
Competing interactions on different length scales are
able to stabilize mesoscale phase separations and the
creation of spatial inhomogeneities in a wide variety of
systems. Examples are stripe formation in doped Mott
insulators, as found in transition metal oxides (TMO)
[1,2], domains in magnetic multilayer compounds [3,4],
or mesoscopic structures formed by assembling polymers
in solution and amphiphiles in water-oil mixtures [5,6].
In many of these cases the tendency towards a perfectly
ordered array of domains, stripes, etc. is undermined by
frustrating long range interactions [7]. Very often, these
assemblies exhibit a long time dynamics similar to the
relaxation seen in glasses. In the context of stripes it has
been argued that the presence of only very few quenched
impurities might already cause a strictly disordered glassy
state [8]. Furthermore, recent molecular dynamics calcu-
lations for charge ordering in TMO found an anomalous
long time relaxation with a power spectrum similar to
1�f noise [9]. Indeed, there is experimental evidence
for the formation of intrinsic inhomogeneities and even a
stripe glass in high temperature superconductors and other
transition metal oxides [10–17]. In particular slow, acti-
vated dynamics as observed in NMR experiments [13,15]
exhibits a striking universality, rather independent of the
details of added impurities, etc. It is therefore tempting to
speculate that glassiness in these systems is self-generated
and does not rely on the presence of quenched disorder,
which may of course further stabilize a glassy state.

In this paper we show that the competition of interac-
tions on different length scales in a uniformly frustrated
system exhibits a self-generated glass transition due to the
emergence of an exponentially large number of metastable
states. This result is obtained by using the replica approach
of Refs. [18,19] and by solving the corresponding many
body problem using the self-consistent screening approxi-
mation [20,21]. Since only very few examples exist for
models which exhibit self-generated glassiness [22,23], all
these approaches are extremely important for a better un-
derstanding of glassiness in general. Even though our find-
ings apply to a broader class of problems than stripes in
TMO, we will adopt a language which is specific to that
problem [24].
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A model for a uniformly frustrated system with compe-
tition on different length scales is given by the Hamilton-
ian [7]
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Here, w�x� characterizes charge degrees of freedom, with
w�x� . 0 in a hole-rich region, w�x� , 0 in a hole-
poor region, and w�x� � 0 if the local density equals
the averaged one. If r0 , 0 the system tends to phase
separate since we have to guarantee charge neutrality,
�w� � 0. The coupling constant, Q, is a measure for the
strength of the Coulomb interaction and characterizes the
competition between short and long range interactions. In
the case of strongly anisotropic, quasi–two-dimensional
cuprate superconductors one expects an anisotropy of the
gradient term in Eq. (1), which we neglect for simplicity.
Despite the absence of a clean derivation of Eq. (1) from
the many electron Schrödinger equation, we note that it
describes, on a phenomenological level, many of the major
competing effects which yield in microscopic theories a
rich phase diagram of inhomogeneous spin and charge
structures [25]. For Q � 0 and r0 , 0 we expect at low
temperatures long range ordered charge modulations. As
shown in Ref. [26], the Coulomb interaction suppresses
this ordered state for all Q . 0 and finite T . Instead, the
system undergoes several crossovers. Most interestingly,
at low temperatures, where jr�T �j , 2

p
Q, a mean field

analysis of Eq. (1) shows that besides a correlation
length, j � 2�r 1 2

p
Q �21�2, an additional length scale,

lm � 4p�2
p
Q 2 r�21�2, emerges, which characterizes

the spatial modulation of the field correlations [26], where
r � r0 1 uT �w2�. These modulations are particularly
relevant for low enough T where r�T � # 0, where mean
field theory gives locally ordered regions with characteris-
tic size lm ø j. We will show that a stripe glass emerges
in this temperature regime.

An essential prerequisite for the anomalous dynamical
features of glassiness, like aging, memory effects, and
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ergodicity breaking, is most certainly the occurrence of
a large number of metastable states, Nms, separated by
energy barriers which are large compared to the tempera-
ture. In viscous liquids undergoing vitrification calorime-
try suggests Nms ~ exp�constV �, where V is the system
size. This observation is the heart of an ideal glass transi-
tion scenario based on random first order transitions [27],
which was originally motivated by microscopic stability
analyses of structural glasses and mean field theories for
random Potts glasses. Below a crossover temperature,
TA, a “viscous,” energy-landscape dominated long time
relaxation sets in due to the occurrence of exponentially
many metastable states, i.e., the configurational entropy,
Sc � kB logNms, becomes extensive. Because of the large
barriers between these states, the system will get stuck for
extremely long times in one of the metastable states, i.e.,
it will freeze into a glass, at some temperature TG , TA
which depends, for example, on the cooling rate. Even
though this laboratory glass transition is purely dynami-
cal, a key ingredient of the ideal glass transition scenario is
that the dynamical slowing arises from proximity to an un-
derlying phase transition at TK , TG , where the configu-
rational entropy would vanish like Sc�T � ~ T 2 TK . If
such an ideal transition exists, even for an infinitely slow
cooling rate, freezing will occur at TK since all the liquid
degrees of freedom die out due to this “entropy crisis” [28].

Detailed theoretical investigation of this scenario has
concentrated on systems with quenched randomness. A
major step forward for studying nonrandom systems was
made in Refs. [18,19], where a new replica approach was
developed. Within this approach, the configurational en-
tropy for a model of a structural glass without quenched
disorder was calculated and found to be in good agreement
with computer simulations [19].

We will use this approach to determine Sc for a system
governed by Eq. (1). The key idea is to introduce, in
analogy to the theory of conventional phase transitions, an
appropriate symmetry breaking field c�r�, and to compute
the partition sum

Z̃�c� �
Z
Dwe2H �w��T2�g�2�

R
d3x�c�x�2w�x��2

, (2)

where g ! 01. The energy f̃�c� � 2T logZ̃�c� will be
low if c�r� equals to configurations which locally mini-
mize H . Sampling all configurations of the c field,
weighted with exp�2f̃�c��T �, is therefore equivalent to
scanning all metastable states such that

F̃ � lim
g!0

1
W

Z
Dc f̃�c� exp�2f̃�c��T � (3)

is a weighted average of the free energy in the
various metastable configurations, where W �R
Dc exp�2f̃�c��T � is introduced for proper nor-

malization. If there are only a few local minima, the limit
g ! 01 behaves perturbatively and F̃ equals to the free
energy, F, of the system. However, in case exponentially
many local minima with large barriers between them
exist, a nontrivial contribution arises from the c integral
even for g ! 01, and the averaged free energy, F̃, differs
from F. This enables us to identify the configurational
entropy Sc via F � F̃ 2 TSc [18,19]. For an illustration
of the corresponding free energy landscape, see the inset
of Fig. 1.

An explicit expression for Sc can be obtained within a
replicated theory [18] with
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It follows that F̃ �
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Inserting Z̃�c� of Eq. (2) into Eq. (4) finally leads to
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with F�m� � 2
T
m logZ�m�. Equation (6) has a formal

similarity to the action of the random field Ising model, ob-
tained within the conventional replica approach, which al-
lows us to use techniques developed for that model [21]. In
the following we use the self-consistent screening approxi-
mation (SCSA) of Eq. (6) [20,21,29 ] and determine the
Green’s function, Gab�q� � �wa�q�wb�2q��, in replica
space. Gab�q� then determines the partition function Z�m�,
and correspondingly Sc.

The interaction between different replicas is symmetric
with respect to the replica index suggesting the mean field
ansatz

Gab�q� � �G�q� 2 F �q��dab 1 F �q� , (7)

with equal diagonal elements G�q�, and equal off-
diagonal elements F �q� [30]. The physical interpretation
of G�r 2 r0� � �w�r�w�r0�� as the thermodynamic (in-
stantaneous) correlation function is straightforward. On
the other hand, F �r 2 r0� � limt!`�w�r,t�w�r0, 0�� can
be interpreted as measuring long time correlations, arising
from trapping in metastable minima which, in mean field
theory, have infinite barriers between them. An analogous
structure in replica space follows for the diagonal elements
SG �q�, and off-diagonal elements SF �q�, of the self-
energy, which are given in the SCSA as

SA�q� � 2
Z d3p

�2p�3 DA�p�A�p 1 q� (8)

with A [ �G ,F 	. The screening of the interaction is
characterized by the collective propagators D

21
G �p� �

�uT �21 1 PG �p� and DF �p� �
2PF �p�D 2

G �p�
12DG �p�PF �p� with
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FIG. 1. Configurational entropy density, Sc�V , as a function
of T�TK for Q � 0.01 and r0 � 210 (TK � 1.7586) and Q �
0.001 and r0 � 26 (TK � 1.0422). In both cases u � L � 1
is used. Note the strong Q dependence of Sc. The inset shows
a typical energy landscape for finite Sc.

polarization functions PA�p� �
R d3q

�2p�3 A�q 1 p�A�q�.
The set of equations is closed by the Dyson equation:
G21�k� � G21

0 �k� 1 SG �k� for the diagonal elements,

and F �k� �
2G 2�k�SF �k�
12G �k�SF �k� for the off-diagonal elements,

respectively. G21
0 �q� � r 1 q2 1 Qq22 is the inverse

Hartree propagator. Note, all momentum integrations
have to be cut off at jpj � L, which is of the order of
an inverse lattice constant. Once the Gab and Dab are
determined the free energy becomes

F�m���2mT � � tr logG21 1 tr logD21 2 trSG . (9)

After performing the trace in replica space for arbitrary in-
teger m and analytical continuation to m ! 1, Sc follows
from Eq. (5). One finds immediately that Sc � 0 if F �k�
vanishes. In the following we discuss the numerical solu-
tion of this set of coupled integral equations.

In Fig. 1, Sc�V is shown for two different Q values as
a function of T . At TA the long time correlation func-
tion F �k� emerges leading to Sc . 0 and a glassy dynam-
ics sets in. The corresponding free energy landscape is
schematically illustrated in the inset. Just as in mean field
Potts glasses with quenched randomness [27], Sc vanishes
at a lower temperature TK . At TK the entropy of the amor-
phous stripe solid equals that of the stripe liquid. There
is no entropic advantage anymore to be in a liquid state,
leading to an obligatory glass transition no matter how
slow the cooling rate. The laboratory glass temperature
TG will lie somewhere between TK and TA and cannot be
determined within our theory. We also find that TK and
TA are only weakly decreasing for increasing Q; see in-
set of Fig. 2. Both temperatures remain finite for Q ! 0.
However, Sc�Q ! 0� ! 0, i.e., the fragility ~

dSc
dT of the

glass vanishes. In other words, the larger the modula-
tion length, the smaller the number of metastable states.
Because of the 1�r interaction, the limit Q ! 0 does
838
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FIG. 2. Momentum dependence of the instantaneous (G ) and
long-time (F ) charge correlation function for the same parame-
ters as in Fig. 1 at T � TA. The inset shows the glass liquid
phase diagram as a function of Q for r0 � 210.

not smoothly connect to the behavior at Q � 0. If one
includes a finite screening length ls in Eq. (1), we expect
that the glassy state disappears for Q ø l24

s .
In Fig. 2, the instantaneous [G�k�] and long-time

[F �k�] charge correlation functions are shown at
T � TA. Even though no charge ordering occurs, the
pronounced peaks at finite k demonstrate that there is
a modulated state with strong short range correlations,
lm , j. Also, since F �k� & G�k�, the modulated
state exhibits an anomalous dynamics, where long time
correlations are only slightly reduced compared to instan-
taneous correlations. Introducing a Debye-Waller factor,
W � 2 log�F �G� for k close to the peak maximum,
gives W � 0.12 �0.13� for Q � 0.01 �0.001�. The
modulation length (inverse peak positions) is 3.5L21

(6L21) and the correlation length is 45L21 (80L21) for
Q � 0.01 �0.001�.

Because of the competing interactions in Eq. (1), an en-
tropy crisis occurs, causing a transition into a glass. This
purely thermodynamic characterization of the spectrum of
metastable states is only the first important step for under-
standing glassiness, and the investigation of dynamical fea-
tures is an even bigger challenge, because it requires going
beyond mean field theory. An argument based on “entropic
droplets” explains quite well the phenomenology of vis-
cous liquid dynamics [27] and can even be made semiquan-
titative [31]. Here we apply these arguments to the present
stripe model. The entropic droplet argument recognizes
an intrinsic instability of the homogeneous metastable so-
lutions, as characterized by Eq. (7): namely, creating a
droplet of one metastable solution within another costs free
energy that can at most scale as a surface energy but the ex-
ponential number of configurations gives an entropic driv-
ing force for such a droplet that scales with V . A mosaic
structure hence will form. The activation free energy of
turning over a single region can be computed where the
entropic gain is given by TSc. A renormalization group
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calculation, based on Ref. [32], leads to a size dependent
surface tension s�R� � s0�RL�2u with u �

d22
2 reflect-

ing the fact that the interface between two states is wetted
by intermediate states. This analysis leads to a charac-
teristic energy barrier DE ~ �TSc�T ��21 which implies a
relaxation time obeying a Vogel-Fulcher law [27]

t ~ exp

µ
DTK
T 2 TK

∂
. (10)

An estimate for the surface tension s0 
 jr0j��uj� for the
stripe model yields R3

0 
 L21�Vs0�TSc�2 for the droplet
volume and D � 3Vs

2
0��LT2TK≠Sc�≠T jTK �. Using our

numerical results for Sc, this leads to D 
 60 200, typi-
cal for moderately fragile and strong glasses, and droplet
sizes R0 
 �25 50�L21 
 �5 10�lm. Note that this esti-
mate is only qualitative since R0 
 j and a real separation
of scales never occurs. The droplet picture implies that the
glass state breaks up into domains of different metastable
states, separated by wetted surfaces, built by intermediate
states. This physical picture is very similar to the conclu-
sions made in Ref. [10] based on NMR experiments.

In summary, we have shown that an exponentially large
number of metastable configurations emerges in a sys-
tem with competing interactions on different length scales,
leading to a glass transition and anomalous long-time dy-
namics. This glass state is self-generated, implying that the
barriers characterizing the activated dynamics are rather
universal and should not depend on details like added im-
purities, but only on the generic interactions on short and
long scales, i.e., the magnetic exchange interactions and
the Coulomb interaction. Furthermore, we showed that
the magnitude of the frustration controls the fragility of
the glass transition. Finally, following Ref. [27], we ar-
gued that the configurational entropy causes a breakup
of the stripe glass into a mosaic of domains or droplets,
built up by the various metastable states, allowing us to
estimate time scales of motions. This causes an intrin-
sic inhomogeneity of all relevant correlation functions,
modulation, and correlation lengths, etc. in the amorphous
glassy state.
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